Robustness of Topological Order in Semiconductor-Superconductor Nanowires in the Coulomb Blockade Regime
نویسندگان
چکیده
Semiconductor-superconductor hybrid systems are promising candidates for the realization Majorana fermions and topological order, i.e. topologically protected degeneracies, in solid state devices. We show that the topological order is mirrored in the excitation spectra and can be observed in nonlinear Coulomb blockade transport through a ring-shaped nanowire. Especially, the excitation spectrum is almost independent of magnetic flux in the topologically trivial phase but acquires a characteristic h/e magnetic flux periodicity in the nontrivial phase. The transition between the trivial and nontrivial phase is reflected in the closing and reopening of an excitation gap. We show that the signatures of topological order are robust against details of the geometry, electrostatic disorder, and the existence of additional subbands and only rely on the topology of the nanowire and the existence of a superconducting gap. Finally, we show that the coherence length in the nontrivial phase is much longer than in the trivial phase. This opens the possibility to coat the nanowire with superconducting nanograins and thereby significantly reduce the current due to cotunneling of Cooper pairs and to enhance the Coulomb charging energy without destroying the superconducting gap. PACS numbers: 74.25.F-, 85.35.Gv, 74.78.Na, 74.20.Rp
منابع مشابه
Proposed detection of the topological phase in ring-shaped semiconductor-superconductor nanowires using Coulomb blockade transport.
In semiconductor-superconductor hybrid structures a topological phase transition is expected as a function of the chemical potential or magnetic field strength. We show that signatures of this transition can be observed in nonlinear Coulomb blockade transport through a ring shaped structure. In particular, on the scale of the superconducting gap and for a fixed electron parity of the ring, the ...
متن کاملThe Analysis of Coulomb Blockade in Fullerene Single Electron Transistor at Room Temperature
The Graphene based single electron transistor (SET) as a coulomb blockade device need to be explored .It is a unique device for high-speed operation in a nano scale regime. A single electron transfers via the coulomb barriers, but its movement may be prevented by coulomb blockade, so its effect is investigated in this research. The conditions of coulomb blockade and its controlling factors such...
متن کاملConductance of disordered semiconducting nanowires and carbon nanotubes: a chain of quantum dots
A comparative study of the low temperature conductivity of an ensemble of multiwall carbon nanotubes and semiconductor nanowires is presented. The quasi one‐dimensional samples are made in nanoporous templates by electrodeposition and CVD growth. Three different structures are studied in parallel: multiwall carbon nanotubes, tellurium nanowires,...
متن کاملDetermination of the superconductor-insulator phase diagram for one-dimensional wires.
We establish the superconductor-insulator phase diagram for quasi-one-dimensional wires by measuring a large set of MoGe nanowires. This diagram is roughly consistent with the Chakravarty-Schmid-Bulgadaev phase boundary, namely, with the critical resistance being equal to RQ=h/4e2. Deviations from this boundary for a small fraction of the samples prompt us to suggest an alternative phase diagra...
متن کاملParity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device
We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. At zero magnetic field, well-defined Coulomb diamonds and the Kondo effect are observed. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed. It i...
متن کامل